Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168909, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38029981

ABSTRACT

Woodland utilization is a promising disposal method for sewage sludge (SS). However, the potential risk of heavy metals (HMs) transport with runoff must be considered. Among the various factors influencing HMs loss, SS application methods (Holing application, HA; Broadcasting and mixing application, BM; Broadcasting application, BA) are likely to cause significant effects by altering soil erosion and soil aggregates. This study aimed to determine how SS application methods affect HMs loss, soil aggregates erosion, and how they are related. Accordingly, the losses of HMs in surface runoff, interflow, and sediment were quantified during six simulated rainfalls. The results demonstrated that all methods reduced surface runoff, but BA was the most effective. Additionally, BA significantly reduced the total sediment yield and the total proportion of the <0.05 mm fraction aggregates. Moreover, BA had the smallest cumulative losses of Pb and Cd through surface runoff and Cu, Pb, and Cd through sediment. Sediment was the most important pathway for HMs loss, through which over 76.56 % of HMs were lost. In BA, the <0.05 mm fraction aggregates had the lowest HMs load, whereas in other treatments had the highest (54.33 %-80.33 %). The potential ecological risk coefficient of Cd was beyond "moderate" in all the pathways of BM and "high" in the interflow of each SS treatment. Nonetheless, when the multi-elements were evaluated collectively, the potential ecological risk index for each SS treatment was categorized as "low". Overall, BA not only reduced soil erosion but also posed no risk of HMs pollution. It should be noted that the loss of Cd in the interflow had a great impact, while the <0.05 mm fraction aggregates played a significant role in the HMs load. Thus, the current study not only provides an effective approach for the environmentally safe disposal of SS but also proposes a scientific method for the application of SS in woodlands.

2.
Environ Res ; 215(Pt 1): 114248, 2022 12.
Article in English | MEDLINE | ID: mdl-36058279

ABSTRACT

Recycling sewage sludge (SS) to soil potentially causes soil heavy metal (HM) pollution and plant phytotoxicity. Biochar plays an important role in alleviating HM phytotoxicity, and responses vary with the feedstocks and usage of biochar. However, the effect of plant adaptability on biochar-mediated alleviation is poorly understood. Here, SS-derived biochar (SB) and rice straw-derived biochar (RB) applied at rates of 1.5% and 3% (W/W, SB1.5, SB3, RB1.5, and RB3) were used to improve the properties of soil amended with SS at 50% (W/W). Alleviation of phytotoxicity by biochar was further analyzed with SS-sensitive plant Monstera deliciosa and SS-resistant plant Ruellia simplex. Results revealed that both SB and RB significantly decreased the soil's bulk density and increased water retention. They also changed soil organic matter content and HMs fractionation. The addition of SB or RB alleviated the SS phytotoxicity, and they significantly promoted the growth and the root morphology and physiological index of M. deliciosa. But for R. simplex, these significant changes only synchronously occurred in SB3 treatment. The alleviation in M. deliciosa was more prominent and more closely connected with soil property changes than in R. simplex. Also, more soil property predictors were observed to play an important role in M. deliciosa growth than in R. simplex growth. These results indicated that biochar alleviating HMs phytotoxicity in SS-amended soil is associated with the changes of soil property. Moreover, the alleviation varies more prominently with plant adaptability than with biochar feedstocks and usage.


Subject(s)
Metals, Heavy , Soil Pollutants , Charcoal , Metals, Heavy/analysis , Metals, Heavy/toxicity , Sewage , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...